

R3.2 Training contents

Document status	5		
Version	Date	Author Description	
V0.1 V0.2	12.09.2021 6.11.2021	Agnieszka Cholewa-Wójcik, Agnieszka Kawecka, Joanna Kulczycka, Agnieszka Czaplicka-Kotas, Justyna Muweis	Responsible for the overall report and the thematic area of New Materials and Biomaterials.
		Paola Scarfato	Responsible for the thematic area of Eco-design and Novel Manufacturing Processing.
		Eveliina Asikainen, Nina Kukkasniemi, and Virpi Rämö (TAMK)	Responsible for the thematic area of Citizen and Consumer Engagement.
		Alberto Navajas, Cristina Nerín, Robert Soliva, Elena Canellas (Campus Iberus), Daniel Menchaca, David Ceniceros (Ecoembes)	Responsible for the thematic area of Residue Management and Valorisation.
		Eva Gallego (Campus Iberus), David Ceniceros (Ecoembes)	Responsible for the CHAINs
Dissemination Level	 ☑ PU Public □ PP Restric reviewers) □ CO Confic Services and pro- 	ted to other programme participants (lential, only for members of the cons vject reviewers)	including Commission Services and project ortium (including EACEA and Commission

Cite As:

If the Deliverable is Public, you will retrieve it from PackAlliance Project website: <u>https://www.packall.eu/outcomes/</u>

Glossary of terms, abbreviations and acronyms

Abbreviation / Acronym / Term	Description
CE	Circular Economy
CHAINs	CHAllenges INnovation teams. Collaborative teams of students of the PackAlliance postgraduate programme to work on a specific industry challenge
EACEA	Education, Audiovisual and Culture Executive Agency
HEI	Higher Education Institution
PackAlliance Hubs	Physical places where the academia-industry collaboration within the project will take place
WP	Work Package

Partner shortname		
P1-Campus Iberus	Partner 1 - Campus Iberus (Spain)	
P2-Ecoembes	Partner 2 - Ecoembes (Spain)	
P3-AGH	Partner 3 - AGH University of Science and Technology (Poland)	
P4-Synthos	Partner 4 - Synthos Group (Poland)	
Р5-ТАМК	Partner 5 - TAMK Tampere University of Applied Sciences (Finland)	
P6-Pyroll	Partner 6 - Pyroll Group (Finland)	
P7-Proplast	Partner 7 - Consorzio per la promozione della cultura plastica - Proplast (Italy)	
P8-UNISA	Partner 8 - Università degli Studi di Salerno (Italy)	

Table of contents

1. INTRODUCTION	5
2. CONTENT OF THE MODULE	6
2.1. MODULE 1. NEW MATERIALS AND BIO-BASED MATERIALS	7
2.2. MODULE 2. ECO-DESIGN AND NOVEL MANUFACTURING PROCESSING	11
2.3. MODULE 3. RESIDUE MANAGEMENT AND VALORISATION	14
2.4. MODULE 4. CITIZEN AND CONSUMER ENGAGEMENT	16
2.5. MODULE 5. CHAINS	18
LIST OF ANNEXES:	19
PROJECT INFO	20

1. Introduction

The report summarizes the results of the work on developing the PackAlliance Program's training curriculum.

The PackAlliance project (funded by Erasmus+ Knowledge Alliance programme in 2020-2022) intends to contribute to modernising the Higher Education curricula by enhancing its alignment with the labour market needs of plastics packaging. The Knowledge Alliance project brings together academic and industry partners from Spain, Poland, Finland, and Italy, in order to foster academia-industry collaboration for innovation and competence building in innovative and sustainable packaging..

The training contents were developed in accordance with <u>Report R2.3 - Characterization of the</u> <u>profile of emerging professionals</u>. The findings of the report include a detailed description of the content as well as a module curriculum. Chapter 2 contains detailed information about the modules' content, including: new materials and biomaterials, eco-design and novel manufacturing processing, citizen and consumer engagement, Residue Management and Valorisation. The syllabus for each module is included in the annexes. Participants in the PackAlliance Pilot Program have access to extensive program information and learning exercises via Campus Iberus' elearning platform.

2. Content of the module

The purpose of this project is to develop a Program for specialists in the circular economy of plastic packaging who will acquire the knowledge, skills, and transversal competencies necessary to carry out activities aimed at transforming the plastic packaging industry toward a circular economy.

The Programme is divided in five thematic modules:

- Module 1. New materials and biomaterials.
- Module 2. Eco-design and novel manufacturing processing.
- Module 3. Residue management and valorisation.
- Module 4. Citizen and consumer engagement.
- Module 5. Challenge-based collaborative practice.

Detailed descriptions of each of the modules are provided in Chapters 2.1-2.5.

2.1. Module 1. New Materials and Bio-Based Materials

The module on new materials and bio-based materials will review the issues related to the knowledge of the possibilities of using innovative materials, including biomaterials in the plastic packaging industry in the context of the development of the circular economy. The module is divided into two parts (Table 1).

The first part is focused on the importance of the latest knowledge in the field of material innovation in solving cognitive and practical problems in the area of circular economy.

The second part is addressed in an entrepreneurial manner. Students will be required to evaluate the environmental consequences of their activities in a professional context.

New materials and bio-based CE	materials in plastic packaging sector in the context of development of the
Bioeconomy strategy and legal aspects of use of new materials and bio-based materials in packaging sector	 Definition and strategy of bioeconomy in EU Scope of the legal aspects in the field of new materials and bio-based materials in packaging sector The analysis of development directive in the selected EU countries Future development trends in the development of legal aspects Analysis of legal acts related to development of new materials and bio-based materials in plastic pacakging sector Gap analysis of the legal act Case-studies on the selected countries in the development of the legal regulation related to the topic
Characteristics of the principles of circular economy	 Characteristics of the principles of circular economy Definition of CE and green deal in the context of new materials and biobased materials CE versus Linear Economy, value chain idea in the conxtect of new materials and biobased materials CE in the context of new materials and biomaterials in the EU policy Tools for monitoring of CE CE in the in the context of new materials and biomaterials in the selected countries Comparision between the introduction of the CE in the context of new materials, circular packaging
Characteristics of polymers as raw materials used in the production of packaging materials, including "new"	 Polymer as a chemical molecule Polymeric reactions Raw materials for polimers Polimeric packaging materials

Table 1. Content description for the module New Materials and Bio-Based Materials

and "bio" and production methods	 Production of packaging materials Biotechnology in bioplastics production Characteristics of processing – extrusion, injection moulding, film blowing, compression moulding, thermoforming
Methods of recycling, recovery and reuse of bio- based materials	 Characteristics of material and raw material recycling Composting requirements and conditions Energy recycling, combustion with energy recovery, calorific value Requirements for packaging reuse Review of packaging return systems, reverse logistics Identification of barriers and indication of opportunities and threats in packaging waste management
Economic assessment and the value of bioplactic materia	 how to turn bioplastic wastes into an asset for the company; methods for value calculation; costs and benefits of bio-based materials from the company point of view; external effects; how an eco-innovation can work for the company – a Porter hypothesis in practice)
Advantages and disadvantages of the use of new materials and bio- based materials in the context of development of the CE (economical aspects)	 Analysis of determinants for development of the CE in the new materials and bio-based materials Tools for assessment of the CE Design the monitoring process of the introduction of the CE LCC for the introduction of the new materials and bio based materials
Adapting bioeconomy strategies in enterprises in selected courtiers of EU	 Trends in the implementation of bioeconomy strategies in the enterprises in EU Scope of the implementation of the bioeconomy strategy in selected sectors Good practices realated to the adaption of the bioeconomy strategies in EU Future development of the strategies
Circular economy as a tool for promotion biomaterials in the field of packaging - policy challenges in different region	 Introduction of the CE in the field of biomaterials The promotion of the CE in the field of biomaterials Analysis of the CE policy implementation in the field of pacagking in the selected regions Challanges of the CE policy implementation in the field of pacagking in the selected regions
Characteristics of biomaterials in plastic packaging sector	 polymers isolated from biomass of plant and animal origin, which include polysaccharides, lipids and proteins polymers synthesized by microorganisms or genetically modified plants, polyesters of hydroxy acids (PHA) chemically synthesized polymers from monomers obtained in the fermentation of biomass, e.g. polylactide (PLA) polymers obtained from petrochemical raw materials: polycaprolactones (PCL), polyesteramides (PEA), aliphatic copolyesters and aromatic copolymers

Certification and labelling – basic requirements and practise	 Analysis and evaluation of the basic chemical properties of biomaterials (atomic weight, solubility, melting point, etc.) Comparison of properties of various bioplastics Characteristics of materials features (physical, mechanical, chemical). Characteristics of materials physical features (thickness, grammage, barrier) Characteristics of materials mechanical features (breaking load, elongation, modulus of elasticity) Development of a material characteristic data sheet
Analysis of the rules of certification and labeling of biomaterials	 Labelling Correctness Assessment Card Analysis of requirements documents concerning eco-labelling Product evaluation card in the certification process
Characteristics of new materials and biomaterials, and their types and use	 Analysis and evaluation of the basic chemical properties of biomaterials (atomic weight, solubility, melting point, etc.) Comparison of properties of various bioplastics Characteristics of materials features (physical, mechanical, chemical). Characteristics of materials physical features (thickness, grammage, barrier) Characteristics of materials mechanical features (breaking load, elongation, modulus of elasticity) Development of a material characteristic data sheet
Analysis of the suitability of materials for various forms of post-consumer packaging waste management	 Mapping of material flows in packaging management Practical aspects of packaging waste identification Processes that prepare post-consumer packaging waste for recycling processes Processes that prepare biodaradable materials for composting
Case study of chosen solutions on how to turn (bio)plastic wastes into assests for a company calculation	 examples and simulations, how the basic conditions for profitability can be established; playing with the predefined simulations students establish the key factors to take into account to ensure profitability of eco-innovation related to bio-based materials in the plastic
Willingness to pay	 Willingness to pay for plastic packaging in the context of development of new materials and bio-materials Direct methods of WTP in the example of plastic packaging in materials and bio-materials
Plastic packaging in the cont	ext of development of new materials and biobased materials technology
Eco-innovations in the new materials and biobased materials technology related to the plastic packaging	 Introduction of the concept of eco-innovations; Tools for assessment of eco-innovations; Good practices in eco-innovations

Food packaging materials – regal requirements, properties of materials and their influence on the used for packaging purposes	 Food contact materials in UE legal regulation Safety of materials intended to come into contact with food Migration form plastics as mayor risk in plastic packaging materials
Economic and Financial efficiency analysis of the new biomaterials in the plastic packaging industry	 indicators for financial efficiency, their meaning and practical usage for (future) company managers and public administration officers to evaluate the profitability of various biopackaging materials indicators for environemntal effects valuation of environmental effects cost-benefit analysis
Management tools for implementation of CE for development of plastic packing in the field of new materials and biomaterials	 ReSolve Model -1,5 H Industrial Symbiosis 1,5 H Three layer Business Model Canvas
Case study of financial efficiency analysis of the new biomaterials	 students are engaged in the comparative efficiency analysis of chosen materials, comparison of costs and environmental effects of various waste hadling methods, such as: landfilling or recycling
Analysis and evaluation of packaging materials used for the production of packaging, including for contact with food	 The procedure for assessing the safety of food materials Analysis and evaluation of selected features and functions of packaging from the perspective of selected entities in the packaging supply chain - case study Preparation of a declaration of conformity of the packaging material
Selection of appropriate packaging materials to the features and properties of the packed product	 Problems mapping related to solutions in the field of packaging selected groups of goods. Packaging designing intended for packing specific products (Design Thinking)

2.2. Module 2. Eco-design and Novel Manufacturing Processing

The module will review strategy elements, methods and new production technologies to develop packaging solutions that are easy on the environment and conserve resources. The module is divided into two parts (Table 2).

The first part is focused on selected strategy elements of packaging design for sustainability and on the evaluation of a product environmental impact.

The second part is dedicated to novel manufacturing processing for packaging systems, and will include:

Table 2. Content	t description for	r the module F	Eco-design and	d Novel Man	ufacturing I	Processing
					and can ing i	reeebbing

Novel Manufacturing Processing for Packaging Systems (3 ECTS)			
Production processes for	Basis of extrusion processes		
flexible plastic packaging	 Extrusion process: description and equipment 		
	 Single screw extrusion process analysis 		
	• Industrial processes for the production of flexible packaging		
	 Cast film extrusion 		
	Process description, Processing parameters and instability		
	phenomena analysis		
	 Film blowing 		
	Process description, Processing parameters and instability		
	phenomena analysis		
	 Cast/blown film extrusion comparison 		
	Film orientation techniques		
Production processes for	Injection molding		
rigid plastic packaging:	 Description of the injection machine 		
injection molding, blow	• Description of the four stages in the cycle: clamping, injection,		
molding, foaming	cooling and ejection stages		
	 Processing parameters. Properties and defect analysis of injected 		
	items		
	Blow molding		
	 Description of the different types of the process 		
	 Extrusion blow molding and injection blow molding 		
	• Thermoforming		
	• Foaming		
	 Description of the foaming process for polymeric materials 		
	 Blowing agents 		
	 Chemical and physical blowing agents 		
	• Foaming process with extrusion and injection molding processes		

Technologies for new	•	Overview of the innovative polymeric systems with potential		
packaging solutions:		applications in the development of sustainable food packaging		
nanocomposites, active		 Polymeric nanocomposites 		
systems, recycled systems,		• Active phases: Oxygen scavengers, Moisture controlling systems		
biopolymers		and Antimicrobial systems		
		• Recycled systems		
		• Biopolymers		
	•	Pros' and drawbacks in their use for food packaging applications		
Manufacturing processes	•	Production of multilayer films: applications and techniques		
for new packaging	•	Co-extrusion technique		
solutions		 Description and apparatus. Feed-blocks and dies. 		
		• Flow instabilities: Surface instabilities and Interfacial instabilities		
	•	Extrusion coating and lamination processes		
	•	Case study: design strategies for biodegradable barrier packaging		
Technological	٠	Analysis of the technological trends for the food packaging in the next		
requirements of new		future		
sustainable packaging	•	Technological requirements of new sustainable packaging solutions		
solutions		 Physical-mechanical properties 		
		• Barrier properties		
		 Scavenging properties 		
		 Antimicrobial properties 		
		o Sustainability		
Novel processing	•	Advanced manufacturing processes		
technologies		 Microcellular foam injection molding (MuCell) 		
		 Dynamic mold conditioning (Heat & Cool) 		
		• Example of new processes for Circular economy approach		
	•	Additive Manufacturing techniques		
		• New technologies for rapid prototyping with thermoplastic		
		polymeric materials		
Innovation and	•	Surface treating basics		
sustainability in surface		• Wettability, contact angle, surface energy and surface tension		
treatments	•	Corona treatment		
	•	Plasma treatment		
	•	Coating processes		
	•	Sustainability in surface treatments		
Sustainable printing	•	Description of the technologies for polymeric film printing		
technologies		• Rotogravure printing		
	_	• Flexographic printing		
	•	r Inding links		
		• Water based links		
		Sustainable processing aids for the production of food contact		
	•	nackaging		
		packaging		
Industry 4.0 for new	٠	Industry 4.0 paradigm and key enabling technologies		
production technologies	•	Human-robot interaction in Industry 4.0		
_		• Cobot applications: Packaging, palletizing and assembly		
	•	Internet of Things and Big Data Analytics		
Packaging Design for Sustain	nabili	ty (2 ECTS)		
Material ECO design	٠	The importance of materials source		
8	•	Maximize material lifetime		
	•	Reduce material complexity		

	• Biomaterials in the eco-design approach: design for compostability		
Designing for the	• Packaging and packaging waste directive: essential requirements		
environment and the law	CEN packaging standard		
Production, supply chain	Packaging production maximizing resource efficiency		
management and logistic	Preventing over complexity		
improvement	Optimize product flows		
	Maximize transport load		
Design for minimization	• The correct balance between under-packaging and over-packaging:		
	decrease material usage maintain the right performance		
	 Primary, secondary and tertiary packaging - the trade-offs 		
	• Complying with the essential requirements		
Design for reuse, recycling	Adding sustainability to traditional design considerations		
and recovery	• Design for dismantling (reduce packaging complexity)		
	 Increase product recyclability: cases history 		
An evaluation of a product	What is LCA		
environmental impact: Life	LCA main applications		
Cycle Analysis	LCA methodology		
	• Software for the analysis		
How to perform an LCA	Goal and scope		
	Life Cycle Inventory		
	Impact assessment		
	Interpretation		
	Case history		
	o Casel		
	o Case2		

2.3. Module 3. Residue management and Valorisation

The module on residue management and valorisation will review the issues related to the end of life of plastic packaging materials. The module is divided into three parts (Table 3).

The first part is focussed on the optimisation of logistics, waste separation and sorting of packaging materials.

The second part is dedicated to recycling systems and novel business models for the second life of residues.

The third part will address the economic, environmental and legislative aspects of plastic waste.

Logistics & sorting (2 ECTS)		
Introduction to polymer materials and polymer processing	 Polymeric materials Processing of recycled plastics Effects of processing on thermoplastics Need of sorting plastics Reprocessing of thermoplastic recyclates Current industry position on plastic production and recycling 	
Residue management	 Residue management Brief Introduction Methods of managing MSW Material Flows in Municipal Solid Waste Warte collection A logistical challenge Sizing the system Transporting waste Sorting plants Introduction Reception and sorting of materials operations Quality control, material adaptation and rejected waste operations Different European Models 	
Recycling Systems & novel bu	usiness models for the second life of residues. (2 ECTS)	
Optimization of plastics recycling	 Optimization of plastics recycling Collection Cleaning of plastics Size reduction 	

Table 3. Content description for the module Residue management and Valorisatio
--

Mechanical recycling of packaging waste	 Mechanical recycling Manual sorting Manual sorting with a degree of automatization Automatic sorting tecniques Flotation tanks Hydrocyclones Air classifier Ballistic separator Magnetic and eddy current separation Electrostatic separation Selective dissolution Sorting by melting 	
Secondary plastic products. Examples and market trends	State of the artCase examples.Future market trends.	
Chemical routes for recycling. Dissolving, catalytic, and thermochemical technologies	 Depolymerization and leaching Thermochemical processes Gasification Hidrogenation Pyrolysis Reduction in a blast furnace Energy Recovery 	
Economic, environmental and legislative aspects of plastic waste. (1 ECTS)		
Economic analysis of plastic waste handling	Costs of recoveryCosts of reprocessing and market forces	
Environmental analysis of plastic waste handling	 Mechanical Recycling Chemical Recycling Incineration Landfill 	
European Union's plastic strategy	• European Union's plastic strategy	

2.4. Module 4. Citizen and consumer engagement

This module considers the engagement of the consumers of plastic packaging and more broadly citizens as actors for ensuring a circular development. In the module, the topics of communication, interaction, and engagement of plastic packaging circularity is discussed on different levels. The module is divided in two parts (Table 4).

The first part is focussed on citizen engagement. It identifies end-users as members of society whose circular behaviour is impacted by laws, regulations, and policies, and whose engagement may be linked to, for instance, civil activism.

The second part is focussed on consumer engagement. It identifies end-users as actors in businesses whose behaviour companies try to impact e.g. with different communication and engagement strategies.

Citizen Engagement (2 ECTS)		
Circular economy in a society	 The principle of CE and the phases of CE in a society The relationship of CE and society The societal support of CE and benefits of CE for the society 	
Theory of citizen engagement	 Principles of citizen engagement Methods of citizen engagement Principles of communication with citizens 	
Interacting and engaging citizens in CE	 Case studies of citizen engagement in a CE Planning and assessing the impact of communication and citizen engagement campaigns 	
Consumer Communications and Engagement on Plastics Packaging Circularity (3 ECTS)		
Consumer Behaviour and Circularity	 Identification of different kinds of consumers and analysis of the change of consumer behaviour regarding circular plastic packaging. Consumer behaviour change in circularity in comparison to end-of-life consumption Consumer behaviour in the context of the CE and plastics packaging Challenges of consumer behaviour field regarding plastics packaging circularity 	
Consumer communication and engagement	 Critical evaluation of circular communication and engagement activities targeted to the consumers of plastic packaging. Pitfalls of consumer communications, such as greenwashing and misleading labels 	

Table 4. Content description for the module Citizen and Consumer engagement

	 Guidelines for a good practice to inform the consumers about sustainability of a product Strategies to communicate sustainability to consumers
Value Creation and Circularity	 Basic concept of value creation: business modelling, value creation, value co-creation, customer value proposition Difference of customer value proposition in single-use economy and circularity Plastic packaging value chain in circularity Insights in consumer value creation in the plastic packaging sector
Consumer Engagement	 Defining consumer segments in the plastic packaging industry Consumer centred approach for understanding consumers
Innovation project	 Innovate consumer engagement activities for circular plastic packaging Service and customer design principles Design for behaviour change and consumer engagement

2.5. Module 5. CHAINs

Part of PackAlliance Postgraduate Programme, a novel challenge-based training methodology, called CHAINS, will be developed in order to put in practice competence and skills acquired along the training programme. This specific mechanism will focus on equipping students with transversal skills (particularly those related to creativity, innovation and digital skills) by establishing working teams at the PackAlliance Hubs All students of the postgraduate course will be grouped into CHAINS which will be collaborative teams of students to work on the specific industry challenge during 2 months.

The challenges developed on the CHAINs was established by the Partners in the $\underline{R3.3 - \text{List of}}$ challenges for collaborative projects

List of Annexes:

- Annex 1 New materials and bio-based materials in plastic packaging sector in the context of development of the CE Syllabus
- Annex 2 Plastic packaging in the context of development of new materials and biobased materials technology Syllabus
- Annex 3 Novel Manufacturing Processing for Packaging Systems Syllabus
- Annex 4 Packaging Design for Sustainability Syllabus
- Annex 5 Logistics & sorting Syllabus
- Annex 6 Recycling Systems & novel business models for the second life of residues
 Syllabus
- Annex 7 Economic, environmental and legislative aspects of plastic waste Syllabus
- Annex 8 Citizen Engagement Syllabus
- Annex 9 Consumer Engagement in Plastic Packaging Circularity Syllabus
- \circ Annex 10 CHAINs Syllabus

PROJECT INFO

Grant Agreement	612212-EPP-1-2019-1-ES-EPPKA2-KA
Programme	Erasmus+
Key Action	Cooperation for innovation and the exchange of good practices
Action Type	Knowledge Alliances for higher education
Project Title	PackAlliance: European alliance for innovation training & collaboration towards future packaging
Project starting date	01/01/2020
Project end date	31/12/2022
Project duration	3 years

This project has received funding from the European Union

PROJECT CONSORTIUM

Copyright: CC BY-NC-SA 4.0: <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u> With this license, you are free to share the copy and redistribute the material in any medium or format. You can also adapt remix, transform and build upon the material.

However only under the following terms:

Attribution — you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — you may not use the material for commercial purposes. ShareAlike — if you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

The information and views set out in this report are those of the authors and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person action on their behalf may be held responsible for the use, which may be made of the information contained therein.

Co-funded by the Erasmus+ Programme of the European Union